
ECE 514: Monte Carlo Simulation

Arpad Voros

October 13th, 2020

1 Background

In wired, digital communications, a system sends a sequence of known and unknown symbols
through a channel. During transmission, after filtering, and after sampling, the received sample,
X can be modeled as

Xi = Csi +Ni (1)

where C is the channel coefficient, s is the symbol, and N is noise. In this simulation, we
are going to use X to estimate the channel coefficient C.

1.1 Specifications

– The simulation consists of two separate runs. One where the number of samples n is 5,
and another where n is 10. Each time, there will be m number of simulated trials, where
m = 1000

– We will be constructing 68.27% confidence intervals (CI) for X

– The true channel coefficient, C, equals 10

– Each symbol equals one when the symbol is known, and since all symbols are known, we
know that

si = 1, 0 ≤ i ≤ n− 1 (2)

– Ni is a sequence of i.i.d. Gaussian noise r.v.’s with the following parameters

Ni ∼ N
(
0, σ2

N

)
, 0 ≤ i ≤ n− 1 (3)

– The SNR, the ratio of the signal power to the noise power, for this simulated channel is
-9dB, or 0.125. The SNR, for this model of X, can be calculated using

SNR = 0.125 =
|C|2

σ2
N

(4)

2 Experiment

We will be using MATLAB to run the simulation. Instead of using the standard random number
generator, we will be using the Mersenne Twister pseudo-random number generator with seed
1056, since the vowels in my name (Arpad Voros) are AAOO, which results in the seed being
16 + 16 + 512 + 512 = 1056

1

ECE 514 Project 1 Arpad Voros

To implement this in MATLAB, we add the following line at the beginning of our script

rng(1056, ’twister’);

Before we construct the various CIs for X, we know that the distribution of X is simply a
constant plus the noise N , meaning it follows the same distribution of N , shifted by Csi. Using
(1), (2), (3), we know

X ∼ N(C, σ2
N) (5)

And from (4), we can determine

σ2
N =

|C|2

0.125
= 800 (6)

so that
µx = E[X] = 10, σx =

√
800 (7)

2.1 Case 1: CI using known variance of X

Since we want to be 68.27% confident,

α = 1− 0.6827 = 0.3173 (8)

And yα/2 is calculated using the Wald distribution, or similarly in MATLAB

y = norminv(1 - (alpha / 2));

And we know our CI for each trial depends on the sample mean M , as well as the range δ,
where

δ = yα/2

√
σ2
X

n
(9)

where δ is consistent throughout all m trials.

2.2 Case 2: CI using estimated variance of X

For this CI, we are unable to use σX , but must use the sample variance S, calculated by

S =
1

n− 1

n−1∑
i=0

(Xi −M)
2

(10)

We know that
S ≈ σ2

X (11)

meaning our CIs use the same yα/2 values, with the only term changing being the δ for each of
the m trials, so that

δj = yα/2

√
Sj
n
, 0 ≤ j ≤ m− 1 (12)

2.3 Case 3: CI using Student’s T Distribution

By taking advantage of the fact that the noise N is normally distributed, we can use Student’s
T distribution to calculate the confidence interval. Our yα/2 value is computed using the inverse
Student’s T distribution, or similarly in MATLAB

y = tinv(1 - (alpha / 2), n - 1);

2

ECE 514 Project 1 Arpad Voros

where n is the number of samples per trial (5 and 10), and n − 1 is the degrees of freedom,
commonly denoted by ν. Using the sample variance as before, we calculate the CI the same
way as before, with the only difference being the yα/2 value

δj = yα/2

√
Sj
n
, 0 ≤ j ≤ m− 1 (13)

2.4 Observations

n
case

1 2 3

5 1 1 1.1417
10 1 1 1.0588

Table 1: All yα/2 values used in creating the CIs

It’s clear that using the Student’s T distribution in case 3 results in a larger confidence interval
when compared to case 2. It also seems to decrease and approach 1 as n increases.

n
case

1 2 3

5 12.6491
√

S
5

√
S
5

10 8.9443
√

S
10

√
S
10

Table 2: All standard deviations used in creating the CIs

As you can see, the standard deviations of the sample means M decrease as n increases,
due to being inversely proportional. This also intuitively makes sense, since increasing the
population will result in more accurate results. For the first case, we know for all trials σ2

X =

800, so that the standard deviation of M used in calculating the CI is
√

800/5 and
√

800/10
for n is 5 and 10, respectively. As for cases 2 and 3, the estimated variance of X, S, is used

3 Results

n
case

1 2 3

5 69.9% 62.0% 68.0%
10 68.3% 65.0% 66.9%

Table 3: Percent of times for C fell into CI

The table above shows the amount if times the true mean of X, C, fell within the CI for all
m trials. We can observe that all of these CIs are close to our theoretical confidence value of
68.27%. But more noticeably, we can see that using the true variance of X in case 1 results in
almost perfect values. Using the estimated variance of X in case 2 drops in accuracy, due to
the small sample size. But then in case 3, since we take advantage of the fact that the noise

3

ECE 514 Project 1 Arpad Voros

is normally distributed, we can observe more accurate values than in the previous case. This
confirms our observation in Table 1, where we observed larger CIs being produced in case 3.

n RMSE
5 27.7389
10 28.5263

Table 4: RMSE for all values of Xij

The mean-square-error is simply calculated for all values of Xij by

MSE =
1

mn

m−1∑
j=0

n−1∑
i=0

(Xij − C)
2

(14)

And the RMSE is simply the square root of the MSE. We observe that these values are awfully
close to our true standard deviation σX =

√
800 ≈ 28.2843, which makes sense since the data,

on average, deviates from the mean by this amount.

All the figures below plot the true mean of X (C = 10) shown in black, the sample mean
M shown in blue, as well as the CI (M ± δ) shown in dashed red for each of the three cases.
Only the first 10 trials are plotted. All the plots are to scale, labeled correctly, and titled
appropriately. The top plot is for n = 5 while the bottom plot is for n = 10.

1 2 3 4 5 6 7 8 9 10

sample

-20

0

20

40

s
ig

n
a

l
m

a
g

n
it
u

d
e

CI using known variance of X (variance of the noise), n = 5, in interval: 69.90%

C

M

CI

1 2 3 4 5 6 7 8 9 10

sample

-20

0

20

40

s
ig

n
a

l
m

a
g

n
it
u

d
e

CI using known variance of X (variance of the noise), n = 10, in interval: 68.30%

C

M

CI

Figure 1: Case 1: CIs for the first 10 trials

The figure above shows the plots for case 1. It’s evident that all the δ values stay consistent
throughout all trials of m, as show in (9)

4

ECE 514 Project 1 Arpad Voros

1 2 3 4 5 6 7 8 9 10

sample

-20

0

20

40

s
ig

n
a

l
m

a
g

n
it
u

d
e

CI using estimated variance of X (sample variance S), n = 5, in interval: 62.00%

C

M

CI

1 2 3 4 5 6 7 8 9 10

sample

-20

0

20

40

s
ig

n
a

l
m

a
g

n
it
u

d
e

CI using estimated variance of X (sample variance S), n = 10, in interval: 65.00%

C

M

CI

Figure 2: Case 2: CIs for the first 10 trials

1 2 3 4 5 6 7 8 9 10

sample

-20

0

20

40

s
ig

n
a
l
m

a
g
n
it
u
d
e

CI using T-Distribution, n = 5, in interval: 68.00%

C

M

CI

1 2 3 4 5 6 7 8 9 10

sample

-20

0

20

40

s
ig

n
a
l
m

a
g
n
it
u
d
e

CI using T-Distribution, n = 10, in interval: 66.90%

C

M

CI

Figure 3: Case 3: CIs for the first 10 trials

The figures above shows the plots for case 2 and 3. It’s evident that all the δ values change
for each trial of m, as observed in (12) and (13). It can also be observed that the shapes of
both CIs are the same, but the CIs in Figure 3 are slightly larger due to what we observed in
Table 1. All in all, we have learned how to create more and more accurate CIs by knowing more
information about the data, since case 1 had the closest accuracy to our 68.27% confidence,
then case 3, and then case 2.

5

ECE 514 Project 1 Arpad Voros

4 Conclusion

I have learned that even if you have a small sample size with a large variance, it is still possible
to extract vital information regarding the data through statistics, analysis, and repeated trials.
As the number of samples increased, its observed that the confidence intervals get closer to
the required value of 68.27%. In addition, better methods for calculating confidence intervals
will result in closer percentages to our required confidence, as we noticed that case 1 was the
closest, then case 3, and then last was case 2. The performance of the yα/2 values increases
as we know more about the distribution of our data, i.e., knowing the noise had a Gaussian
distribution using the Student’s T distribution for confidence intervals yielded higher accuracy.

5 Appendix

1 % seed: Arpad Voros => AAOO => 1056
2 rng(1056, 'twister');
3

4 % initialize some variables
5 % trials
6 m = 1000;
7 % recieved samples
8 n = [5, 10];
9 % signal to noise ratio

10 snr = 0.125;
11 % symbol
12 s = 1;
13 % true channel coefficient
14 C = 10;
15 % sigma n
16 sig n = sqrt((abs(C)ˆ2) / snr);
17

18 % initialize CI variables
19 % how confident we want to be
20 confident = 0.6827;
21 % alpha coefficient
22 alpha = 1 − confident;
23 % y value for cases 1 and 2
24 y = norminv(1 − (alpha / 2));
25

26 % some dimensions
27 % number of n's
28 num n = length(n);
29 % sizes of our data for each value of n
30 sizes = [n', repmat(m, num n, 1)];
31

32 % result cell arrays, used for plotting
33 M cell = cell(num n, 1);
34 int known cell = cell(num n, 1);
35 int est cell = cell(num n, 1);
36 int t cell = cell(num n, 1);
37

38 % allocating memory for cell arrays
39 for instance = 1:num n
40 M cell{instance} = zeros(sizes(instance, :));
41 int known cell{instance} = zeros(2, m);
42 int est cell{instance} = zeros(2, m);
43 int t cell{instance} = zeros(2, m);

6

ECE 514 Project 1 Arpad Voros

44 end
45

46 % allocating memory for the percentage times the estimated value
47 % falls into the confidence interval
48 percent in known = zeros(num n, 1);
49 percent in est = zeros(num n, 1);
50 percent in t = zeros(num n, 1);
51 rmse = zeros(num n, 1);
52 y t = zeros(num n, 1);
53

54 % simulate for all values of n
55 for instance = 1:num n
56 % set up simulation, calculate sample means and variances
57 % noise
58 N = normrnd(0, sig n, sizes(instance, :));
59 % recieved signal
60 X = C*s + N;
61 % sample mean
62 M = sum(X) / n(instance);
63 % sample variance, unbiased estimator for sigma x squared
64 S = sum((X − repmat(M, n(instance), 1)).ˆ2) / (n(instance) − 1);
65 % root mean square error
66 rmse(instance) = sqrt(mean(mean((X − C).ˆ2)));
67

68 % store M
69 M cell{instance} = M;
70

71 % CI using KNOWN variance of X (sigma nˆ2)
72 % ∆

73 ∆ known = y * sig n / sqrt(n(instance));
74 % confidence interval, upper and lower bounds
75 int known = zeros(2, m);
76 int known(1, :) = M − ∆ known;
77 int known(2, :) = M + ∆ known;
78 % percentage the true channel coefficient falls into interval
79 percent in known(instance) = sum((C ≥ int known(1, :)) & (C ≤ int known(2, ...

:))) / m;
80 % store values
81 int known cell{instance} = int known;
82

83 % CI using ESTIMATED variance of X (sample variance S)
84 % ∆

85 ∆ est = y * sqrt(S / n(instance));
86 % confidence interval, upper and lower bounds
87 int est = zeros(2, m);
88 int est(1, :) = M − ∆ est;
89 int est(2, :) = M + ∆ est;
90 % percentage the true channel coefficient falls into interval
91 percent in est(instance) = sum((C ≥ int est(1, :)) & (C ≤ int est(2, :))) ...

/ m;
92 % store values
93 int est cell{instance} = int est;
94

95 % CI using Student's T distribution
96 % ∆

97 y t(instance) = tinv(1 − (alpha / 2), n(instance) − 1);
98 ∆ t = y t(instance) * sqrt(S / n(instance));
99 % confidence interval, upper and lower bounds

100 int t = zeros(2, m);
101 int t(1, :) = M − ∆ t;
102 int t(2, :) = M + ∆ t;
103 % percentage the true channel coefficient falls into interval

7

ECE 514 Project 1 Arpad Voros

104 percent in t(instance) = sum((C ≥ int t(1, :)) & (C ≤ int t(2, :))) / m;
105 % store values
106 int t cell{instance} = int t;
107 end
108

109 % amount to plot
110 num plot = 10;
111 samp plot = 1:num plot;
112

113 % minima and maxima value arrays, fot plot range
114 min vals = zeros(num n, 1);
115 max vals = zeros(num n, 1);
116

117 % find minima and maxima, for plot range
118 for instance = 1:num n
119 min vals(instance) = min([min(min(int known cell{instance}(1:(2 * ...

num plot)))); min(min(int est cell{instance}(1:(2 * num plot)))); ...
min(min(int t cell{instance}(1:(2 * num plot))))]);

120 max vals(instance) = max([max(max(int known cell{instance}(1:(2 * ...
num plot)))); max(max(int est cell{instance}(1:(2 * num plot)))); ...
max(max(int t cell{instance}(1:(2 * num plot))))]);

121 end
122

123 % finding boundaries for figures
124 factor = 0.05;
125 bounds = [min(min vals) − abs((max(max vals) − min(min vals)) * factor), ...

max(max vals) + abs((max(max vals) − min(min vals)) * factor)];
126

127 % close all already open figures
128 close all;
129 ci colors = ["red", "red", "red"];
130 % plotting all figures
131 for instance = 1:num n
132 % KNOWN
133 figure(1);
134 subplot(num n, 1, instance);
135 hold on;
136 plot(samp plot, C * ones(size(samp plot)), 'Color', 'black');
137 plot(samp plot, M cell{instance}(samp plot), 'Color', 'blue');
138 plot(samp plot, int known cell{instance}(1, samp plot), 'Color', ...

ci colors(1), 'LineStyle', '−−');
139 plot(samp plot, int known cell{instance}(2, samp plot), 'Color', ...

ci colors(1), 'LineStyle', '−−');
140 title(sprintf('CI using known variance of X (variance of the noise), n = ...

%d, in interval: %.2f%%', n(instance), 100 * percent in known(instance)));
141 legend('C', 'M', 'CI');
142 xlabel('sample');
143 ylabel('signal magnitude');
144 ylim(bounds);
145 hold off;
146 if instance == num n
147 print −depsc ci known.eps
148 end
149

150 % ESTIMATED
151 figure(2);
152 subplot(num n, 1, instance);
153 hold on;
154 plot(samp plot, C * ones(size(samp plot)), 'Color', 'black');
155 plot(samp plot, M cell{instance}(samp plot), 'Color', 'blue');
156 plot(samp plot, int est cell{instance}(1, samp plot), 'Color', ...

ci colors(2), 'LineStyle', '−−');

8

ECE 514 Project 1 Arpad Voros

157 plot(samp plot, int est cell{instance}(2, samp plot), 'Color', ...
ci colors(2), 'LineStyle', '−−');

158 title(sprintf('CI using estimated variance of X (sample variance S), n = ...
%d, in interval: %.2f%%', n(instance), 100 * percent in est(instance)));

159 legend('C', 'M', 'CI');
160 xlabel('sample');
161 ylabel('signal magnitude');
162 ylim(bounds);
163 hold off;
164 if instance == num n
165 print −depsc ci est.eps
166 end
167

168 % Student's T Dist
169 figure(3);
170 subplot(num n, 1, instance);
171 hold on;
172 plot(samp plot, C * ones(size(samp plot)), 'Color', 'black');
173 plot(samp plot, M cell{instance}(samp plot), 'Color', 'blue');
174 plot(samp plot, int t cell{instance}(1, samp plot), 'Color', ci colors(3), ...

'LineStyle', '−−');
175 plot(samp plot, int t cell{instance}(2, samp plot), 'Color', ci colors(3), ...

'LineStyle', '−−');
176 title(sprintf('CI using T−Distribution, n = %d, in interval: %.2f%%', ...

n(instance), 100 * percent in t(instance)));
177 legend('C', 'M', 'CI');
178 xlabel('sample');
179 ylabel('signal magnitude');
180 ylim(bounds);
181 hold off;
182 if instance == num n
183 print −depsc ci t.eps
184 end
185 end

9

